Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins.

نویسندگان

  • Alison I Graham
  • Stuart Hunt
  • Sarah L Stokes
  • Neil Bramall
  • Josephine Bunch
  • Alan G Cox
  • Cameron W McLeod
  • Robert K Poole
چکیده

Zinc ions play indispensable roles in biological chemistry. However, bacteria have an impressive ability to acquire Zn(2+) from the environment, making it exceptionally difficult to achieve Zn(2+) deficiency, and so a comprehensive understanding of the importance of Zn(2+) has not been attained. Reduction of the Zn(2+) content of Escherichia coli growth medium to 60 nm or less is reported here for the first time, without recourse to chelators of poor specificity. Cells grown in Zn(2+)-deficient medium had a reduced growth rate and contained up to five times less cellular Zn(2+). To understand global responses to Zn(2+) deficiency, microarray analysis was conducted of cells grown under Zn(2+)-replete and Zn(2+)-depleted conditions in chemostat cultures. Nine genes were up-regulated more than 2-fold (p < 0.05) in cells from Zn(2+)-deficient chemostats, including zinT (yodA). zinT is shown to be regulated by Zur (zinc uptake regulator). A mutant lacking zinT displayed a growth defect and a 3-fold lowered cellular Zn(2+) level under Zn(2+) limitation. The purified ZinT protein possessed a single, high affinity metal-binding site that can accommodate Zn(2+) or Cd(2+). A further up-regulated gene, ykgM, is believed to encode a non-Zn(2+) finger-containing paralogue of the Zn(2+) finger ribosomal protein L31. The gene encoding the periplasmic Zn(2+)-binding protein znuA showed increased expression. During both batch and chemostat growth, cells "found" more Zn(2+) than was originally added to the culture, presumably because of leaching from the culture vessel. Zn(2+) elimination is shown to be a more precise method of depleting Zn(2+) than by using the chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of Escherichia coli ZinT in cobalt, mercury and cadmium resistance and structural insights into the metal binding mechanism.

Escherichia coli ZinT is a metal binding protein involved in zinc homeostasis, with additional putative functions in the resistance against other metals. Herein, a method was designed and implemented to evaluate from a structural and functional viewpoint metal binding to E. coli ZinT in 96-well microtiter plates. The isolated ZinT was mixed with several metal ions and their binding ability was ...

متن کامل

Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins.

Zinc is an important component of many proteins, but in large concentrations it is poisonous to the cell. Thus its transport is regulated by zinc repressors ZUR of proteobacteria and Gram-positive bacteria from the Bacillus group and AdcR of bacteria from the Streptococcus group. Comparative computational analysis allowed us to identify binding signals of ZUR repressors GAAATGTTATANTATAACATTTC ...

متن کامل

Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli.

CzcD from Ralstonia metallidurans and ZitB from Escherichia coli are prototypes of bacterial members of the cation diffusion facilitator (CDF) protein family. Expression of the czcD gene in an E. coli mutant strain devoid of zitB and the gene for the zinc-transporting P-type ATPase zntA rendered this strain more zinc resistant and caused decreased accumulation of zinc. CzcD, purified as an amin...

متن کامل

Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol

Zinc is an essential trace element that is required for the function of a large number of proteins. As these zinc-binding proteins are found within the cytosol and organelles, all eukaryotes require mechanisms to ensure that zinc is delivered to organelles, even under conditions of zinc deficiency. Although many zinc transporters belonging to the Cation Diffusion Facilitator (CDF) families have...

متن کامل

Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

Objective(s): This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np) on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC) strains. Materials and Methods: Minimum inhibitory concentration (MIC) of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 27  شماره 

صفحات  -

تاریخ انتشار 2009